Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 189, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305872

RESUMO

Bacterial strains of the genera Arthrobacter, Bacillus, Dietzia, Kocuria, and Micrococcus were isolated from oil-contaminated soils of the Balgimbaev, Dossor, and Zaburunye oil fields in Kazakhstan. They were selected from 1376 isolated strains based on their unique ability to use crude oil and polyaromatic hydrocarbons (PAHs) as sole source of carbon and energy in growth experiments. The isolated strains degraded a wide range of aliphatic and aromatic components from crude oil to generate a total of 170 acid metabolites. Eight metabolites were detected during the degradation of anthracene and of phenanthrene, two of which led to the description of a new degradation pathway. The selected bacterial strains Arthrobacter bussei/agilis SBUG 2290, Bacillus atrophaeus SBUG 2291, Bacillus subtilis SBUG 2285, Dietzia kunjamensis SBUG 2289, Kocuria rosea SBUG 2287, Kocuria polaris SBUG 2288, and Micrococcus luteus SBUG 2286 promoted the growth of barley shoots and roots in oil-contaminated soil, demonstrating the enormous potential of isolatable and cultivable soil bacteria in soil remediation. KEY POINTS: • Special powerful bacterial strains as potential crude oil and PAH degraders. • Growth on crude oil or PAHs as sole source of carbon and energy. • Bacterial support of barley growth as resource for soil remediation.


Assuntos
Hordeum , Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Petróleo/microbiologia , Campos de Petróleo e Gás , Hordeum/metabolismo , Poluentes do Solo/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Bacillus subtilis/metabolismo , Carbono/metabolismo , Solo , Biodegradação Ambiental , Microbiologia do Solo , Hidrocarbonetos/metabolismo
2.
DNA Res ; 30(6)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952165

RESUMO

For the first time, we report the whole genome sequence of a hydrocarbonoclastic Chryseobacterium oranimense strain isolated from Trinidad and Tobago (COTT) and its genes involved in the biotransformation of hydrocarbons and xenobiotics through functional annotation. The assembly consisted of 11 contigs with 2,794 predicted protein-coding genes which included a diverse group of gene families involved in aliphatic and polycyclic hydrocarbon degradation. Comparative genomic analyses with 18 crude-oil degrading bacteria in addition to two C. oranimense strains not associated with oil were carried out. The data revealed important differences in terms of annotated genes involved in the hydrocarbon degradation process that may explain the molecular mechanisms of hydrocarbon and xenobiotic biotransformation. Notably, many gene families were expanded to explain COTT's competitive ability to manage habitat-specific stressors. Gene-based evidence of the metabolic potential of COTT supports the application of indigenous microbes for the remediation of polluted terrestrial environments and provides a genomic resource for improving our understanding of how to optimize these characteristics for more effective bioremediation.


Assuntos
Chryseobacterium , Petróleo , Bactérias/genética , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Petróleo/microbiologia , Chryseobacterium/genética , Chryseobacterium/metabolismo , Biodegradação Ambiental
3.
Int Microbiol ; 26(3): 529-542, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36680696

RESUMO

Biosurfactants are amphiphilic compounds with extensive applications in oily contaminated environments to remove hydrocarbons. Moreover, enzymes such as laccase and manganese peroxidase are responsible for the oxidation of a variety of phenolic compounds and aromatic amines. Therefore, in the present study, bacteria with the potential to produce biosurfactants and enzymes (namely, laccase, manganese peroxidase, and endoglucanase carboxymethyl cellulose (CMCase)) were isolated from petroleum oil-contaminated soil. From 15 isolated bacteria, three isolates were selected as the best producers of biosurfactants according to the related tests, such as tests for surface tension reduction. These three bacteria indicated tolerance to a salinity test and were classified as resistant and very resistant. The isolates 3, 12, 13, and 14 showed positive results for the degradation of guaiacol, phenol red, and carboxymethylcellulose, as well as the decoloration of methylene blue by the creation of a clear halo around the bacterial colony. Upon the quantitation of the laccase and manganese peroxidase activities, 22.58 U/L and 21.81 U/L, respectively, were measured by isolate 13. Furthermore, CMCase activity was recorded with 0.057436 U/ml belonging to isolate 14. Bacterial strains with appreciable laccase, peroxidase, CMCase activity, and biosurfactant production potentials were identified through 16S rDNA sequence analysis as Bacillus sp. (isolate 3), Bacillus toyonensis (isolate 12), Bacillus cereus (isolate 13), and Bacillus tropicus (isolate 14), and their nucleotide sequences were deposited in the GenBank. The potentials for the industrial applicability of the biosurfactants and enzymes abound, and production needs to be optimized by the selected bacterial strains.


Assuntos
Lacase , Petróleo , Petróleo/metabolismo , Petróleo/microbiologia , Hidrocarbonetos/metabolismo , Bacillus cereus/metabolismo , Solo , Biodegradação Ambiental
4.
Arch Microbiol ; 204(10): 649, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36171503

RESUMO

Algerian petrochemical industrial areas are usually running spills and leakages of hydrocarbons, which constitutes a major source of toxic compounds in soil such as aromatic hydrocarbons. In this paper, samples of crude oil-polluted soil were collected from Skikda's oil refinery and were subjected to mono and polyaromatic hydrocarbons threshold assessment. Soil physicochemical parameters were determined for each sample to examine their response to pollution. Amid 34 isolated bacteria, eleven strains were selected as best Biosurfactants (Bs)/Bioemulsifiers (Be) producers and were assigned to Firmicutes and Proteobacteria phyla based on molecular identification. Phylogenetic analysis of partial 16S rDNA gene sequences allowed the construction of evolutionary trees by means of the maximum likelihood method. Accordingly, strains were similar to Bacillus spp., Priesta spp., Pseudomonas spp., Enterobacter spp. and Kosakonia spp. with more than 95% similarity. These strains could be qualified candidates for an efficient bioremediation process of severally polluted soils.


Assuntos
Petróleo , Poluentes do Solo , Argélia , Bactérias , Biodegradação Ambiental , DNA Ribossômico , Hidrocarbonetos , Indústria de Petróleo e Gás , Petróleo/microbiologia , Filogenia , Solo , Microbiologia do Solo
5.
BMC Microbiol ; 22(1): 120, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505298

RESUMO

BACKGROUND: Oil spills are ranked among the greatest global challenges to humanity. In Uganda, owing to the forthcoming full-scale production of multi-billion barrels of oil, the country's oil pollution burden is anticipated to escalate, necessitating remediation. Due to the unsuitability of several oil clean-up technologies, the search for cost-effective and environmentally friendly remediation technologies is paramount. We thus carried out this study to examine the occurrence of metabolically active indigenous bacterial species and chemical characteristics of soils with a long history of oil pollution in Uganda that can be used in the development of a bacterial-based product for remediation of oil-polluted sites. RESULTS: Total hydrocarbon analysis of the soil samples revealed that the three most abundant hydrocarbons were pyrene, anthracene and phenanthrene that were significantly higher in oil-polluted sites than in the control sites. Using the BIOLOG EcoPlate™, the study revealed that bacterial species richness, bacterial diversity and bacterial activity (ANOVA, p < 0.05) significantly varied among the sites. Only bacterial activity showed significant variation across the three cities (ANOVA, p < 0.05). Additionally, the study revealed significant moderate positive correlation between the bacterial community profiles with Zn and organic contents while correlations between the bacterial community profiles and the hydrocarbons were largely moderate and positively correlated. CONCLUSIONS: This study revealed largely similar bacterial community profiles between the oil-polluted and control sites suggestive of the occurrence of metabolically active bacterial populations in both sites. The oil-polluted sites had higher petroleum hydrocarbon, heavy metal, nitrogen and phosphorus contents. Even though we observed similar bacterial community profiles between the oil polluted and control sites, the actual bacterial community composition may be different, owing to a higher exposure to petroleum hydrocarbons. However, the existence of oil degrading bacteria in unpolluted soils should not be overlooked. Thus, there is a need to ascertain the actual indigenous bacterial populations with potential to degrade hydrocarbons from both oil-polluted and unpolluted sites in Uganda to inform the design and development of a bacterial-based oil remediation product that could be used to manage the imminent pollution from oil exploration and increased utilization of petroleum products in Uganda.


Assuntos
Petróleo , Poluentes do Solo , Bactérias/metabolismo , Cidades , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Solo/química , Poluentes do Solo/metabolismo , Uganda
6.
Sci Total Environ ; 821: 153564, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101516

RESUMO

Microbes in subsurface oil reservoirs play important roles in elemental cycles and biogeochemical processes. However, the community assembly pattern of indigenous microbiome and their succession under long-term human activity remain poorly understood. Here we studied the microbial community assembly in underground sandstone cores from 190 to 2050 m in northeast China and their response to long-term oil recovery (10-50 years). Indigenous microbiome in subsurface petroleum reservoirs were dominated by Gammaproteobacteria, Firmicutes, Alphaproteobacteria, Bacteroidetes, and Actinobacteria, which exhibited a higher contribution of homogenizing dispersal assembly and different taxonomy distinct ecological modules when compared with perturbed samples. Specifically, the long-term oil recovery reduced the bacterial taxonomic- and functional-diversity, and increased the community co-occurrence associations in subsurface oil reservoirs. Moreover, distinguished from the perturbed samples, both variation partition analysis and structural equation model revealed that the contents of quartz, NO3- and Cl- significantly structured the α- and ß-diversity in indigenous subsurface bacterial communities. These findings first provide the holistic picture of microbiome in the deep oil reservoirs, which demonstrate the significant impact of human activity on microbiome in deep continental subsurface.


Assuntos
Gammaproteobacteria , Microbiota , Petróleo , Bactérias/genética , Humanos , Campos de Petróleo e Gás , Petróleo/microbiologia , RNA Ribossômico 16S
7.
BMC Microbiol ; 22(1): 43, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120442

RESUMO

BACKGROUND: Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS: M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS: Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.


Assuntos
Basidiomycota/genética , Variação Genética , Glicolipídeos/genética , Lipase/genética , Família Multigênica , Petróleo/microbiologia , Glicolipídeos/metabolismo , Lipase/classificação , Poluição por Petróleo , Filogenia , Microbiologia do Solo , Trinidad e Tobago
8.
Microbiol Res ; 253: 126882, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619415

RESUMO

Sustainable treatment of petroleum oil sludge still remains as a major challenge to petroleum refineries. Bioremediation is the promising technology involving bacteria for simultaneous production of biosurfactant and followed by degradation of petroleum compounds. Complete genomic knowledge on such potential microbes could accentuate its successful exploitation. The present study discusses the genomic characteristics of novel biosurfactant producing petrophilic/ petroleum hydrocarbon degrading strain, Enterobacter xiangfangensis STP-3, isolated from petroleum refinery oil sludge contaminated soil. The genome has 4,584,462 bp and 4372 protein coding sequences. Functional analysis using the RAST and KEGG databases revealed the presence of biosynthetic gene clusters linked to glycolipid and lipopeptide production and multiple key candidate genes linked with the degradation pathway of petroleum hydrocarbons. Orthology study revealed diversity in gene clusters associated to membrane transport, carbohydrate, amino acid metabolism, virulence and defence mechanisms, and nucleoside and nucleotide synthesis. The comparative analysis with 27 other genomes predicted that the core genome contributes to its inherent bioremediation potential, whereas the accessory genome influences its environmental adaptability in unconventional environmental conditions. Further, experimental results showed that E. xiangfangensis STP-3 was able to degrade PHCs by 82 % in 14 days during the bioremediation of real time petroleum oil sludge with the concomitant production of biosurfactant and metabolic enzymes, To the best of our knowledge, no comprehensive genomic study has been previously reported on the biotechnological prospective of this species.


Assuntos
Biodegradação Ambiental , Enterobacter , Genoma Bacteriano , Petróleo , Enterobacter/genética , Genoma Bacteriano/genética , Genômica , Petróleo/microbiologia , Estudos Prospectivos
9.
Microbiologyopen ; 10(4): e1225, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459557

RESUMO

Microbially influenced corrosion (MIC) may contribute significantly to overall corrosion risks, especially in the gas and petroleum industries. In this study, we isolated four Prolixibacter strains, which belong to the phylum Bacteroidetes, and examined their nitrate respiration- and Fe0 -corroding activities, together with two previously isolated Prolixibacter strains. Four of the six Prolixibacter strains reduced nitrate under anaerobic conditions, while the other two strains did not. The anaerobic growth of the four nitrate-reducing strains was enhanced by nitrate, which was not observed in the two strains unable to reduce nitrate. When the nitrate-reducing strains were grown anaerobically in the presence of Fe0 or carbon steel, the corrosion of the materials was enhanced by more than 20-fold compared to that in aseptic controls. This enhancement was not observed in cultures of the strains unable to reduce nitrate. The oxidation of Fe0 in the anaerobic cultures of nitrate-reducing strains occurred concomitantly with the formation of nitrite. Since nitrite chemically oxidized Fe0 under anaerobic and aseptic conditions, the corrosion of Fe0 - and carbon steel by the nitrate-reducing Prolixibacter strains was deduced to be mainly enhanced via the biological reduction of nitrate to nitrite, followed by the chemical oxidation of Fe0 to Fe2+ and Fe3+ coupled to the reduction of nitrite.


Assuntos
Bacteroidetes/metabolismo , Ferro/química , Nitratos/química , Nitritos/química , Anaerobiose , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Corrosão , Compostos Ferrosos/química , Oxirredução , Petróleo/microbiologia , RNA Ribossômico 16S/genética , Água do Mar/química , Aço/química
10.
PLoS One ; 16(8): e0256376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437564

RESUMO

The use of potent fungal mixed cultures is a promising technique for the biodegradation of crude oil. Four isolates of fungi, namely, Alternaria alternata (AA-1), Aspergillus flavus (AF-3), Aspergillus terreus (AT-7), and Trichoderma harzianum (TH-5), were isolated from date palm soil in Saudi Arabia. The mixed fungal of the four isolates have a powerful tool for biodegradation up to 73.6% of crude oil (1%, w/v) in 14 days. The fungal consortium no. 15 containing the four isolates (1:1:1:1) performed significantly better as a biodegradation agent than other consortium in a variety of environmental factors containing crude oil concentration, incubation temperature, initial pH, biodegradation time and the salinity of the medium. The fungal consortium showed better performance in the biodegradation of normal alkanes (n-alkanes) than that of the polycyclic aromatic hydrocarbons (PAHs); the biodegradation efficiency of normal alkanes of the fungal consortium (67.1%) was clearly high than that of the PAHs (56.8%).


Assuntos
Fungos/fisiologia , Petróleo/microbiologia , 2,6-Dicloroindofenol/metabolismo , Análise de Variância , Biodegradação Ambiental , Fungos/enzimologia , Fungos/genética , Fungos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Concentração de Íons de Hidrogênio , Consórcios Microbianos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Probabilidade , RNA Ribossômico 5,8S/genética , Rizosfera , Salinidade , Temperatura , Fatores de Tempo
11.
Int J Biol Macromol ; 186: 788-799, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34245738

RESUMO

A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear ß(2 â†’ 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.


Assuntos
Frutanos/isolamento & purificação , Paenibacillus/metabolismo , Petróleo/microbiologia , Configuração de Carboidratos , Fracionamento Químico , Temperatura Alta , Relação Estrutura-Atividade , Vitrificação
12.
World J Microbiol Biotechnol ; 37(7): 122, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151386

RESUMO

The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


Assuntos
Burkholderia/metabolismo , Cupriavidus/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Octanos/metabolismo , Pseudomonas/metabolismo , Técnicas de Tipagem Bacteriana , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Burkholderia/classificação , Burkholderia/genética , Catecol 2,3-Dioxigenase/genética , Cupriavidus/classificação , Cupriavidus/genética , Citocromo P-450 CYP4A/genética , DNA Bacteriano , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S , Tolueno/metabolismo , Xilenos/metabolismo
13.
Sci Rep ; 11(1): 9347, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931710

RESUMO

A deep-sea fungus Aspergillus sydowii BOBA1 isolated from marine sediment at a depth of 3000 m was capable of degrading spent engine (SE) oil. The response of immobilized fungi towards degradation at elevated pressure was studied in customized high pressure reactors without any deviation in simulating in situ deep-sea conditions. The growth rate of A. sydowii BOBA1 in 0.1 MPa was significantly different from the growth at 10 MPa pressure. The degradation percentage reached 71.2 and 82.5% at atmospheric and high pressure conditions, respectively, within a retention period of 21 days. The complete genome sequence of BOBA1 consists of 38,795,664 bp in size, comprises 2582 scaffolds with predicted total coding genes of 18,932. A total of 16,247 genes were assigned with known functions and many families found to have a potential role in PAHs and xenobiotic compound metabolism. Functional genes controlling the pathways of hydrocarbon and xenobiotics compound degrading enzymes such as dioxygenase, decarboxylase, hydrolase, reductase and peroxidase were identified. The spectroscopic and genomic analysis revealed the presence of combined catechol, gentisate and phthalic acid degradation pathway. These results of degradation and genomic studies evidenced that this deep-sea fungus could be employed to develop an eco-friendly mycoremediation technology to combat the oil polluted marine environment. This study expands our knowledge on piezophilic fungi and offer insight into possibilities about the fate of SE oil in deep-sea.


Assuntos
Aspergillus/genética , Aspergillus/metabolismo , Biodegradação Ambiental , Genoma Fúngico , Sedimentos Geológicos/microbiologia , Peroxidases/metabolismo , Petróleo/metabolismo , Aspergillus/crescimento & desenvolvimento , Petróleo/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
14.
Braz J Microbiol ; 52(2): 787-800, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33813729

RESUMO

Crude oil extracted from oilfield reservoirs brings together hypersaline produced water. Failure in pipelines transporting this mixture causes contamination of the soil with oil and hypersaline water. Soil salinization is harmful to biological populations, impairing the biodegradation of contaminants. We simulated the contamination of a soil from an oilfield with produced water containing different concentrations of NaCl and crude oil, in order to evaluate the effect of salinity and hydrocarbon concentration on prokaryote community structure and biodegradation activity. Microcosms were incubated in CO2-measuring respirometer. After the incubation, residual aliphatic hydrocarbons were quantified and were performed 16S rRNA gene sequencing. An increase in CO2 emission and hydrocarbon biodegradation was observed with increasing oil concentration up to 100 g kg-1. Alpha diversity decreased in oil-contaminated soils with an increase in the relative abundance of Actinobacteria and reduction of Bacteroidetes with increasing oil concentration. In the NaCl-contaminated soils, alpha diversity, CO2 emission, and hydrocarbon biodegradation decreased with increasing NaCl concentration. There was an increase in the relative abundance of Firmicutes and Proteobacteria and a reduction of Actinobacteria with increasing salt concentration. Our results highlight the need to adopt specific bioremediation strategies in soils impacted by mixtures of crude oil and hypersaline produced water.


Assuntos
Microbiota , Campos de Petróleo e Gás/microbiologia , Petróleo/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Hidrocarbonetos/metabolismo , Microbiota/genética , Petróleo/microbiologia , RNA Ribossômico 16S/genética , Salinidade , Cloreto de Sódio/metabolismo , Solo/química
15.
Pol J Microbiol ; 70(1): 69-78, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33815528

RESUMO

The chemotactic properties of an oil-degrading Pseudomonas aeruginosa strain 6-1B, isolated from Daqing Oilfield, China, have been investigated. The strain 6-1B could grow well in crude oil with a specific rhamnolipid biosurfactant production. Furthermore, it exhibits chemotaxis toward various substrates, including glycine, glycerol, glucose, and sucrose. Compared with another oil-degrading strain, T7-2, the strain 6-1B presented a better chemotactic response towards crude oil and its vital component, n-alkenes. Based on the observed distribution of the strain 6-1B cells around the oil droplet in the chemotactic assays, the potential chemotaxis process of bacteria toward crude oil could be summarized in the following steps: searching, moving and consuming.


Assuntos
Quimiotaxia , Petróleo/metabolismo , Pseudomonas aeruginosa/metabolismo , Biodegradação Ambiental , China , Petróleo/análise , Petróleo/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Tensoativos/análise , Tensoativos/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-33744596

RESUMO

The wide use of fossil fuels and their associated environmental concerns, highlighted the importance of affordable and clean energy (goal 7), as adopted by the Sustainable Development Goals of the United Nations for 2030. For years now, the detection of sulfur components in liquid fuels is performed mainly for environmental and health purposes in compliance with the respective legislations. Towards this, the aerobic and anaerobic biodesulfurization (BDS) process, which entails the use of microorganisms to limit the sulfur concentration is followed. To ensure effective BDS, several traditional analytical methods are utilized, although they require bench-top, bulky, costly, and time-consuming instruments along with skilled personnel. The currently employed analytical methods are mostly chromatographic techniques (e.g. liquid and gas) coupled with various detectors. To start with, high-performance liquid chromatography with ultraviolet detector (HPLC-UV), as well as electrospray ionization-LC-mass spectrometry (ESI-LC-MS) were mostly reported. Additionally, many detectors were coupled to gas chromatography (CG) including atomic emission detector (GC-AED), flame ionization detector (GC-FID), flame photometric detector (GC-FPD), sulfur fluorescence detector (GC-SFD), mass selective detector (GC-MS), etc. The solid-phase microextraction (SPME) technique provides extra capabilities when added to the separation techniques. Towards the continuous interest in oil supercomplex synthesis, other atmospheric and surface desorption ionization techniques, as well as the multidimensional 2D chromatographic systems (GC × GC and LC × LC) were also investigated, due to their unsurpassed resolution power. The current review ends with final remarks per applied methodology and the necessity to respect and protect the human environment and life.


Assuntos
Cromatografia , Espectrometria de Massas , Petróleo , Enxofre , Bactérias/metabolismo , Biotecnologia , Extração Líquido-Líquido , Petróleo/análise , Petróleo/metabolismo , Petróleo/microbiologia , Enxofre/análise , Enxofre/química , Enxofre/metabolismo
17.
Braz J Microbiol ; 52(2): 651-661, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33443727

RESUMO

The petrochemical industry is responsible for many accidental releases of pollutants in soil such as hydrocarbons and toxic metals. This co-contamination is responsible for a delay in the degradation of the organic pollution. Many successful technologies to remove these metals apply extracellular polymeric substances (EPS). In this study, we tested the application of an EPS from a Paenibacillus sp. to aid the bioremediation of soils contaminated with crude oil and nickel. We conducted a microcosm experiment to soils containing combinations of oil, nickel, and EPS. The final concentration of oil was evaluated with an infrared spectrometer. Also, we sequenced the metagenomes of the samples in an ion torrent sequencer. The application of EPS did not aid the removal of hydrocarbons with or without the presence of nickel. However, it led to a smaller decrease in the diversity indexes. EPS decreased the abundance of Actinobacteria and increased that of Proteobacteria. The EPS also decreased the connectivity among Actinobacteria in the network analysis. The results indicated that the addition of EPS had a higher effect on the community structure than nickel. Altogether, our results indicate that this approach did not aid the bioremediation of hydrocarbons likely due to its effect in the community structure that affected hydrocarbonoclastic microorganisms.


Assuntos
Bactérias/metabolismo , Biopolímeros/química , Recuperação e Remediação Ambiental/métodos , Níquel/metabolismo , Paenibacillus/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Recuperação e Remediação Ambiental/instrumentação , Hidrocarbonetos/metabolismo , Paenibacillus/metabolismo , Petróleo/análise , Petróleo/microbiologia , Solo/química
18.
PLoS One ; 16(1): e0243976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493159

RESUMO

Due to the inefficient reproduction of microorganisms in oxygen-deprived environments of the reservoir, the applications of microbial enhanced oil recovery (MEOR) are restricted. To overcome this problem, a new type of air-assisted MEOR process was investigated. Three compounding oil degradation strains were screened using biochemical experiments. Their performances in bacterial suspensions with different amounts of dissolved oxygen were evaluated. Water flooding, microbial flooding and air-assisted microbial flooding core flow experiments were carried out. Carbon distribution curve of biodegraded oil with different oxygen concentration was determined by chromatographic analysis. The long-chain alkanes are degraded by microorganisms. A simulation model was established to take into account the change in oxygen concentration in the reservoir. The results showed that the optimal dissolved oxygen concentration for microbial growth was 4.5~5.5mg/L. The main oxygen consumption in the reservoir happened in the stationary and declining phases of the microbial growth systems. In order to reduce the oxygen concentration to a safe level, the minimum radius of oxygen consumption was found to be about 145m. These results demonstrate that the air-assisted MEOR process can overcome the shortcomings of traditional microbial flooding techniques. The findings of this study can help for better understanding of microbial enhanced oil recovery and improving the efficiency of microbial oil displacement.


Assuntos
Alcanos/metabolismo , Bactérias , Biodegradação Ambiental , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Enterobacter/crescimento & desenvolvimento , Enterobacter/isolamento & purificação , Enterobacter/metabolismo , Fermentação , Oxigênio/metabolismo , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo
19.
FEMS Microbiol Lett ; 367(17)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32832988

RESUMO

The biosurfactants have extensive applications in food and petroleum microbiology. The aims of this research were isolation and characterization of thermo-tolerant biosurfactants from highly producing yeast strains. The Bushnell Hass medium was used for screening the biosurfactant-producing yeasts. Biosurfactant presence was evaluated using oil displacement assay and surface tension test. The best biosurfactant-producing strain was named Candida keroseneae GBME-IAUF-2 and its 5.8s-rDNA sequence was deposited in GenBank, NCBI, under the accession number MT012957.1. The thin layer chromatography and Fourier-transform infrared spectroscopy analysis confirmed that the extracted biosurfactant was sophorolipid with a significant surface activity. The purified sophorolipid decreased the surface tension of water from 72 to 29.1 mN/m. Its maximum emulsification index, E24%, was recorded as 60% and preserved 92.06-97.25% of its original activity at 110-120°C. It also preserved 89.11% and 84.73% of its original activity in pH of 9.3 and 10.5, respectively. It preserved 96.66-100% of its original activity in saline extreme conditions. This is the first report of sophorolipid production by the yeast C. keroseneae. According to the high thermal, pH and saline stability, the sophorolipid produced by C. keroseneae GBME-IAUF-2 could be highly recommended for applications in microbial enhanced oil recovery as well as food industries as an excellent emulsifying agent.


Assuntos
Microbiologia Industrial , Petróleo/microbiologia , Saccharomycetales/metabolismo , Ácidos Oleicos/química , Ácidos Oleicos/metabolismo , RNA Ribossômico 5,8S/genética , Saccharomycetales/genética , Especificidade da Espécie
20.
Gene ; 755: 144909, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569720

RESUMO

In the microbial world, bacteria are the most effective agents in petroleum hydrocarbons (PHs) degradation, utilization/mineralization and they serve as essential degraders of crude oil contaminated environment. Some genes and traits are involved in the hydrocarbon utilization process for which transcriptome analyses are important to identify differentially expressed genes (DEGs) among different conditions, leading to a new understanding of genes or pathways associated with crude oil degradation. In this work, three crude oil utilizing Pseudomonas aeruginosa strains designated as N002, TP16 and J001 subjected to transcriptome analyses revealed a total of 81, 269 and 137 significant DEGs. Among them are 80 up-regulated genes and one downregulated gene of N002, 121 up- regulated and 148 down-regulated genes of TP16, 97 up-regulated and 40 down-regulated genes of J001 which are involved in various metabolic pathways. TP16 strain has shown more number of DEGs upon crude oil treatment in comparison to the other two strains. Through quantitative real time polymerase chain reaction (qRT-PCR), the selected DEGs of each strain from transcriptome data were substantiated. The results have shown that the up- regulated and down-regulated genes observed by qRT-PCR were consistent with transcriptome data. Taken together, our transcriptome results have revealed that TP16 is a potential P. aeruginosa strain for functional analysis of identified potential DEGs involved in crude oil degradation.


Assuntos
Biodegradação Ambiental , Petróleo/microbiologia , Pseudomonas aeruginosa/genética , Bactérias/genética , Regulação para Baixo , Poluentes Ambientais/efeitos adversos , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/genética , Hidrocarbonetos/metabolismo , Transcriptoma/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA